

Geomorphological Framework -Glacial and Periglacial Sediments, Structures and Landforms

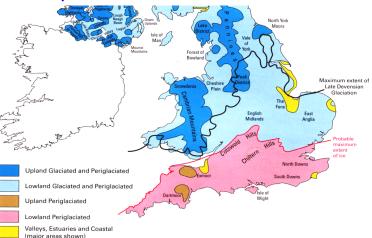
Giles, D.P., Griffiths, J.S., Evans, D.J.A. Murton, J.B. & the Engineering Geology Working Party

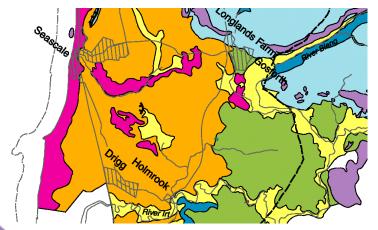
"-the present is the key to the past" Charles Lyell Principles of Geology (1830)

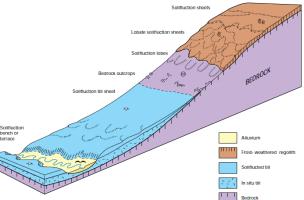
Principal Contributors

- Dr David Giles
 - University of Portsmouth
- Prof Jim Griffiths
 - University of Plymouth
- Prof David Evans
 - Durham University
- Prof Julian Murton
 - University of Sussex

Additional contributions from:

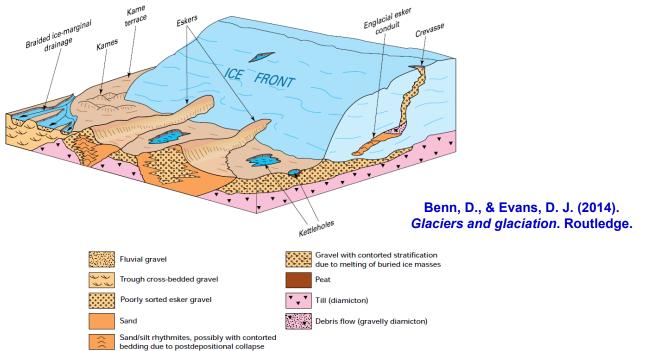

Prof David Norbury, University of Sussex Prof Colin Ballantyne, University of St Andrews Prof Emrys Phillips, BGS


Terrain Classification


- Provinces
- Domains
- Landsystems
- Ground Models

McMillan, A.A. et al (2000) Hydrogeological characterisation of the onshore Quaternary sediments at Sellafield using the concept of domains Foster et al (1999) Quaternary geology – towards meeting user requirements. BGS.

Booth, S., Merritt, J., & Rose, J. (2015). Quaternary Provinces and Domains–a quantitative and qualitative description of British landscape types. Proceedings of the Geologists' Association, 126(2), 163-187.

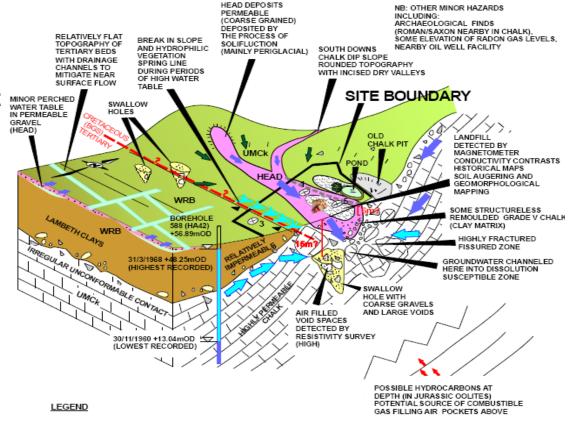

Ground Models

• Landsystem v Process Form Models

Landsystem

Area of common terrain attributes, different from those of adjacent areas, in which recurring patterns of topography, soils & vegetation reflect the underlying geology, past erosional & depositional processes,

Process-Form Model Conceptual model that emphasizes the genetic interrelationships of specific landform– sediment associations at both local & regional scales in terms of known process & form linkages



Types of Ground Model

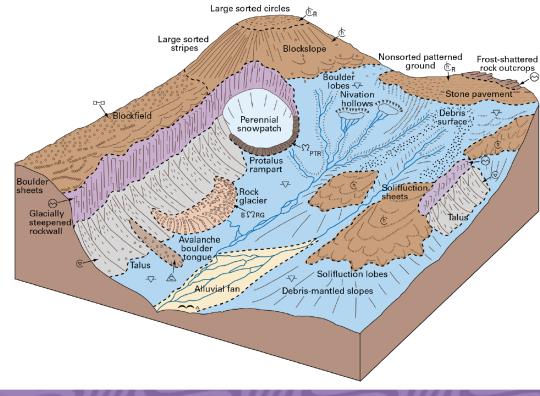
- Conceptual
 - Essentially qualitative in nature & illustrate the key features of a geological situation & the processes active in that environment
- Observational.
 - Scaled down versions of actual ground conditions at specific sites
- Analytical
 - Representations of reality using mathematical formulae, different media or schematics

Engineering Geological Models - an introduction: IAEG Commission 25 S. Parry, F. J. Baynes, M. G. Culshaw, M. Eggers, J. F. Keaton, K. Lentfer, J. Novotny & D. Paul.

Informing the Ground Model

Quaternary History "the present is the key to the Jast" Charles Lyell Principles of Geology (1830) Glacial & Periglacial Genesis Engineering & Geohazard

Significance

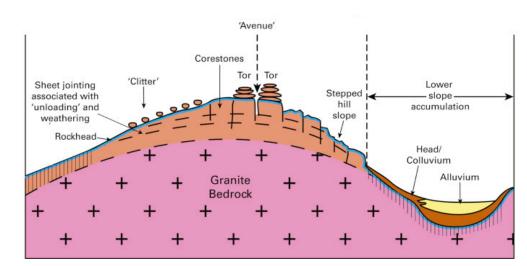

Informing the Ground Model

 Building blocks required to develop ground models for glaciated & periglaciated terrains

Catalogue of

- Sediments
- Structures
 - Macro
 - Micro
- Landforms

Schematic representation of the Late Devensian periglacial features of the Scottish Highlands that were probably active during the Loch Lomond Stadial (Ballantyne, 1984)

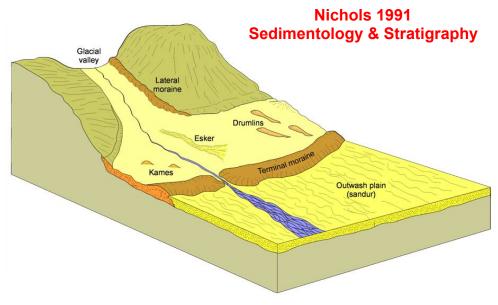

The Periglacial Landsystem

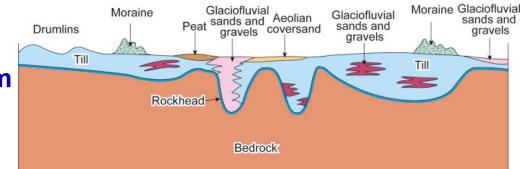
- Lowland Periglacial Terrain Landsystems
 - Plateau
 - Sediment-mantled hillslope
 - Rock slope
 - Slope-foot
 - Valley
 - Buried
 - Submerged

Upland Periglacial Terrain Landsystems

- Plateau
- Sediment-mantled hillslope
- Rock slope
- Slope-foot

Booth, S., Merritt, J., & Rose, J. (2015). Quaternary Provinces and Domains–a quantitative and qualitative description of British landscape types. Proceedings of the Geologists' Association, 126(2), 163-187.




The Glacial Landsystem

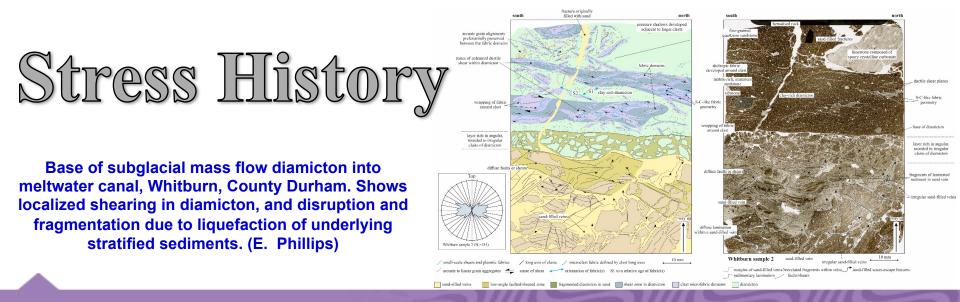
Ice sheet related landsystems

- Subglacial footprint
- Ice-marginal complexes
- Supraglacial debris complexes
- Upland glacial landsystems
 - Subglacial footprint
 - Ice-marginal complexes
 - Supraglacial debris complexes
- Glaciofluvial landsystems
 - Ice-contact settings
 - Proglacial settings
- Subaqueous glacial landsystem
 - Ice-proximal depo-centres
 - Distal sediment piles

Booth, S., Merritt, J., & Rose, J. (2015)

- Building blocks for the Conceptual Ground Model
- Sediments
- Glacial Environment
 - Glacial Depositional Processes
 - Glaciolacustrine & Glaciomarine Processes
 - Glaciofluvial Processes
- Periglacial Environment
 - Periglacial Slope Processes
 - Periglacial Fluvial Processes
 - Fluvio-Aeolian Processes
 - Cold-Climate Periglacial Aeolian Processes
 - Periglacial Weathering Processes

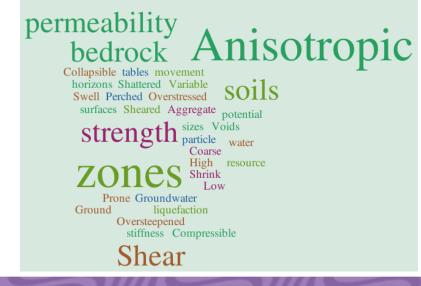
Dinas Dinlle thrust block moraine North Wales (P. Brabham)


- Building blocks for the Conceptual Ground Model
- Macro Structural, Erosional & Sediment Architectural Elements
 - Glaciogenic Sediment Macrostructures
 - Glaciotectonic Macrostructures
 - Macroscale Erosional Forms
 - Glaciofluvial Macrostructures & Architectural Elements
 - Glaciofluvial Macrostructures & Architectural Elements
 - Periglacial Macrostructures

Ice-wedge pseudomorph within periglacial fluvial sand & gravel, Whisby quarry, Lincoln, England. (J.B. Murton).

- Building blocks for the Conceptual Ground Model
- Microstructures
 - Periglacial Microstructures in Engineering Soils
 - Periglacial Microstructures Superimposed on Glaciogenic Sediments
 - Glaciogenic Sediment Microstructures

- Building blocks for the Conceptual Ground Model
- Landforms
 - Glacial Landforms
 - Glaciotectonic Landforms
 - Glaciofluvial Landforms
 - Subaqueous Landforms
 - Plateau Landsystem
 - Sediment Mantled Hillslope Landforms
 - Rock Slope Landforms
 - Valley Landforms
 - Buried Landforms


Ice rafted chalk megablocks, Overstrand, Norfolk, England. (D. Giles)

Engineering Significance

- Principal Engineering Significance of Glacial & Periglacial Landsystems – Deposits, Structures & Landforms
 - Aggregate resource
 - Variable particle sizes, Coarse horizons
 - Anisotropic permeability, Anisotropic strength, stiffness
 - Compressible soils, Swell / Shrink potential
 - Ground movement, Low shear strength
 - Groundwater, High permeability zones
 - Oversteepened zones
 - Overstressed zones
 - Perched water tables
 - Prone to liquefaction
 - Shattered bedrock
 - Shear surfaces, Sheared bedrock
 - Voids, Collapsible soils

Developed Nomenclature

- Geological Origin Name and Qualifiers with Examples in accordance with BS5930
- For example:
- Glacial Depositional Processes
 - Subglacial Traction Till
 - Glaciotectonite
 - Supraglacial mass flow diamicton/glaciogenic debris flow deposit

Table 3.5 Geological Origin Name and Qualifiers with Examples in accordance with BS5930 (Anon, 2015)

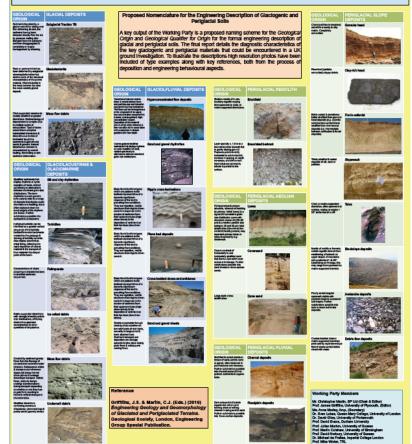
GEOLOGICAL ORIGIN	Geological Qualifier for Origin	Extended Terms Used in Text	Terminology Replaced	Geological Origin Example
LACIAL DEPOSITS	Undifferentiated			(GLACIAL DEPOSITS Undifferentiated)
	Subglacial traction till		Boulder Clay Lodgement Till	(GLACIAL DEPOSITS Subglacial traction till)
			Deformation Till	
			Subglacial Melt- Out Till	
			Sublimation Till	
			Comminution Till	
			Lee-side cavity fills/ice-bed separation deposits	
			Endiamict Glaciotectonite	
			Tectomict	
			Soft bed till	
			Deforming bed till	
	Glaciotectonite		Comminution Till Deformation Till	(GLACIAL DEPOSITS Glaciotectonite)
			Exodiamiet Glaciotectonite	
			Tectomict	
	Mass flow debris	Supraglacial mass flow diamicton/ glaciogenic debris flow deposits	Supraglacial Melt-Out (Moraine) Till Flow till	(GLACIAL DEPOSITS Mass flow debris)

University of **Portsmouth**

Developed Nomenclature

- Geological Origin Name and Qualifiers with Examples in accordance with BS5930
- For example:
- Periglacial Slope Processes
 - Granular head deposits
 - Clay-rich head deposits
 - Slopewash deposits
 - Fluvio-colluvial deposits
 - Talus deposits
 - Avalanche deposits
 - Blockslope deposits
 - Debris-flow deposits

XVI ECSMGE 2015 Edinburgh 2015. Poster P-281


The Geological Society of London Engineering Group Working Party on Periglacial and Glacial Engineering Geology Corresponding Author: Dr David Giles, Principal Lecturer in Engineering Geology School of Earth and Environmental Sciences, University of Portamouth, UK

dave.glies@port.ac.uk

Notract: The Engineering Group of the Geological Society of London established a Working Party to underlake a stake-of-hear inview on the ground conditions associated wi mere Qualemary perigdasia and glacial environments and ther inderlaki, from a engineering geological wappoint. The thai report is not intended to define the geographic extern amer periglacial and glacial environments around the worki, but to concertrate on ground models that would be applicable to support the engineering geological praditioner.

The Working Farly considered the bilowing bopics with respect to engineering geology: Qualemary Setting, Geomorpholigikar Framework, Gatabia Conceptual Ground Modes, Peripatakai and Permittol Conceptual Ground Modes, Engineering Muneitatian and Azakat, Engineering Turveisigation and Assessment, Claacia and Peripatakai Soli and Robot Logging along with Design and Construction Considerations. The final report also included a substantial set of case studies highlighting the Investigation and design challenges presented by these terrans.

Sediment Name

3.5.1.3

Previous terms

Diagnostic characteristics

Environment of formation

> Common **Structures** present

Principal Engineering significance

Typical images

Proposed sediment name

Supraglacial mass flow diamicton/glaciogenic debris flow deposit

Previous Terms	Supraglacial morainic till, flow till, melt-out till, ablation till		
Diagnostic Characteristics	Predominantly clast-supported, massive to crudely stratified or graded diamictons but the sedimentology of supraglacial depo-centres is complex due to multiple cycles of <u>todeposition</u> , during formation. Typical facies associations comprise interbedded diamictons and discontinuous bodies of laminated lacustrine sediments, and glaciofluvial sands and gravels. Internal disturbance is common and characterized by normal faulting. flow folding		
	and soft sediment deformation.		
Environment of Formation	Glacier surfaces or on ice-cored moraines		
Common Structures Present	Although they appear largely masive, individual debris flows can form tabular or lens-shaped units, often with erosional, channelized bases and flat tops. Successive flows can therefore be distinguished by their upper and/or lower boundaries, which are commonly marked by basal concentrations of clasts, upper washed horizons' interbased of silt, sand or gravel, or very subtle partings. Each of these characteristics, as well as any internal structures, reflect the nature of the mass flow type, specifically related to the moisture content and coherence of the matrix Supraglacial mass flow type, specifically related to the moisture content and coherence of the matrix Bere the substrate can be characterized small folds, thrusts and shears, associated with rotated to slightly attenuated diamicton pebbles derived from the overlying debris flow. The debris flow-substrate interface can be marked by elongate 'flames' of the substrate material separating lobate or pendant structures of the debris flow dismicton, which are progressively titled <u>downflow</u> . The base of the debris flow can contain detached 'flames' or ribbons of the substrate material as well as indicators of rotational deformation, such as circular, arcuate and galaxy-like grain arrangements. Importantly, none of these features is singularly diagnostic of debris flow deposits and can be found in subglacial tills also.		
Principal Engineering Significance	Variable particle sizes, Anisotropic permeability, Anisotropic strength, Anisotropic stiffness, Perched water tables, Coarse horizons, Shear surfaces, Sheared bedrock		
Typical Images			
Fig 3.5.1.3 c Fud	by stratified reavely mass flow denosits comprising a stacked sequence of discontinuous layers of predominantly		

Fig 3.5.1.3a Crudely stratified gravelly mass flow deposits comprising a stacked sequence of discontinuous layers of predominantly clast-supported but locally matrix-supported diamictons separated in places by gravelly lags, Kyiárjökull, Iceland. (D.J.A. Evans)

Sediments

Sedimentological description

Engineering description

Fig 3.5.1.3c Very crudely stratified boulder-rich and predominantly clast-supported diamictons with contorted bedding structures and localized pockets of stratified sand and gravel. Gillespie's Beach, New Zealand. (D.J.A. Evans) Engineering Description

Sedimentological Description Crudely stratified diamictons with a range of clast contents and matrix properties. Often interbedded with or separated by discontinuous layers of silt, sand and gravel. Can display crude grading, often with basal concentrations of clasts. Flow structures or soft sediment deformation features are visible wherever the deposits possess any stratification

Often indistinctly bedded gravelly sandy CLAYS with low to medium cobble and low boulder content. Occasionally fine upwards. Bedding affected by flow and soft structure deformation features.

Principal References

Lawson (1979), Exles. (1979), Johnson & Rodine (1984), Owen (1994), Johnson & Gillam (1995), Phillips (2006), Evans et al. (2010) **Engineering Geology Case Studies**

Bell (2000), Culshaw et al. (1991), McMillan et al. (2000), Reeves et al. (2006a, 2006b)

Principal references **Engineering geology** case studies

Structure Name 3.7.14	Relict periglacial shears
Diagnostic Characteristics	Underlie gently sloping ground underlain by weathered clay bedrocks. Shear surfaces may be polished and striated. Shallow, low-angle basal shears are the most extensive form, at depths of c . 1.5–3.0m, at or near the base of the reworked clay or the top of destructured clay, and subparallel to the ground surface. Deeper, subhorizontal continuous shears occur near the base of weathered clay at depths of c . 4–8m. Smaller, discontinuous shears produced by internal deformation during mass movement are commonly associated with both the shallow and the deeper shears. High-angle shears sometimes present in reworked and destructured clay, and occur to depths of c . 3m beneath hillslopes of 5° or less. Shears are often difficult to see in freshly dug sections when the soil is at its natural water content, and time is needed for drying to cause shrinkage so that the clays pull apart along the shear surfaces.
Principal Engineering Significance	Ground movement, Shear surfaces, Low shear strength, Anisotropic permeability

Macro Structures

Diagnostic characteristics

Principal Engineering significance

Typical images

Typical Image

Fig 3.7.14 Basal shear surface with striations and polish in clay-rich head deposits, Sevenoaks, Kent, England. Scale in inches. (J.N. Hutchinson)

Principal references

Engineering geology case studies

Principal References

Harris (2013);

Hutchinson (1991), Spink (1991), Skempton & Weeks (1976), Chandler (1970, 1972), Harris (1977), Skempton et al. (1991)

3.8.2.4 Calcitans Microstructures

Calcitans are discontinuous coatings of secondary calcium carbonate that form by precipitation beneath particles. In this example, they are not found on the same side of the aggregates but in different orientations, which indicates that the aggregates have rotated after the calcitans started to form. Rotation probably accompanied gelifluction.

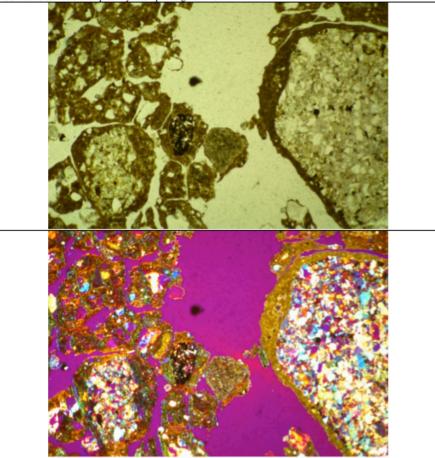


Fig 3.6.7.4a PPL Fig 3.6.7.4b XPL with gypsum wedge. Calcitans (dark brown in upper image) surrounding sediment aggregates ('pebble structure'; multi coloured in lower image) in silty-clay diamicton (till), Mount Provender, Shackleton Range, Antarctica. Field of view = 6.4 mm wide. (J. van der Meer)

Principal References van der Meer et al. (1993)

Micro Structures

Terrain Unit	3.11.2.1 Solifluction Sheets and Aprons
Image	Fig 3.11.2.1a Relict solifluction sheets, Broadway, Cotswolds, Worcestershire, England. (D. Giles)
Form /	
Form / Topography	Solifluction landforms are expanses of mobile or formerly mobile sediments on gentle to moderate slopes that ha moved downslope by solifluction and which often terminate downslope at a step or riser. Solifluction sheets general
ropography	have little or no surface expression. Morphologically they are smooth convexo-concave slopes that can extend fro
	several hundred metres to 3 or 4km downslope. Shear surfaces can be found typically at 2-3m deep in clay-rich deposit
Landsystem	Lowland Periglacial Terrain: Upland Periglacial Terrain: Sediment-Mantled Hillslope Landsystem
Process of	Predominant form of periglacial mass movement in active periglacial environments and solifluction deposits a
Formation	landforms are widespread and are common in relict form. Result from the slow downslope movement of soil due
	recurrent freezing and thawing of the ground. Solifluction is due to one or more of three related processes: needle-
	creep, frost creep and gelifluction. Emplaced on slopes with inclinations as low as 1-2° due to excessive pore wa
	pressures generated in thaw.
Modern	
Analogue	
Associated	Fig 3.11.5.2.1b2 Active solifluction sheet Beinn Bheoil, N Highlands, Scotland. (C.K. Ballantyne)
	Solifluction lobes, benches and terraces.
Features	Count mousement Short surfaces Anisotropic strength I are short strength
Features Principal	Ground movement, Shear surfaces, Anisotropic strength, Low shear strength
Features Principal Engineering	Ground movement, Shear surfaces, Anisotropic strength, Low shear strength
Features Principal Engineering Significance	
Features Principal Engineering	Ground movement, Shear surfaces, Anisotropic strength, Low shear strength Ballantyne & Harris (1994), Harris (1987, 2013) Hutchinson (1991, 1992), Spink (1991), Skempton & Weeks (1976), Chandler (1970, 1972), Harris (1977), Skempton

Periglacial Landforms

Image of relict form

Form / Topography

Landsystem

Process of formation

Image of modern form

Associated features

Principal engineering significance

Principal references

Engineering geology case studies

Terrain Unit	3.10.1.6 Whaleback		
Image		Glacial Lai	ndforms
		Image of relict form	
		Form / Topography	
Form /	Fig 3.8.1.6a Whalebacks, Coire Lagan, Skye, Scotland (D.J.A Evans) A streamlined smoothed or scratched bedrock knoll with symmetrical longitudinal profiles, several metres to a few	Form / Topography	
Form / Topography	A streamined smoothed or scratched bedrock knoll with symmetrical longitudinal profiles, several metres to a rew hundred metres high, resembling a whale in profile.		
Landsystem	Upland glacial landsystem (hard rock terrain): Subglacial footprint	Law day a fam.	
Process of	Formed by abrasion of both stoss and lee sidesof a rock knoll. Small whalebacks can form under only a few	Landsystem	
Formation	hundred metres of ice, larger ones under deep ice streams.		
Modern			
Analogue		Process of formation	
		Image of modern form	
	Fig 3.8.1.6b Striated whaleback, Konowbreen, Svalbard (D.J.A Evans)	Associated features	
Associated	Rock drumlins		
Features		Principal engineering significance	
Principal	Sheared bedrock	· ····································	
Engineering		Dringing	
Significance		Principal	Engineering geology
	B (2012-) (1	-	
Principal	Rea (2013a), Glasser & Bennett (2004), Evans, I.S. (1996)	references	case studies

O University of Portsmouth

Supporting Data

- Comprehensive reference list
 - Contemporary glacial & periglacial research
 - Engineering geology case studies
- QRA Field Guide Listings
 - Sites to observe sediments & landforms in the UK

THE QUATERNARY OF SKYE Field Guide

Edited by Colin K. Ballantyne & J. John Lowe

2016